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INTRODUCTION

Grown-in microdefects determine not only the ini-
tial defect structure of dislocation-free Si single crys-
tals but also the subsequent processes of its transforma-
tion as a result of technological processes. Therefore,
investigation of the mechanism of formation of grown-
in microdefects is a key both to controlling the defect
structure of crystals and to understanding the problem
of fundamental interactions of point defects.

Currently, there are two approaches to solution of
the problem of grown-in microdefect formation. The
first approach has been developed within the model of
dynamics of point defects, in which a crystal is consid-
ered as a dynamic system or a solid-state chemical reac-
tor, in which point defects move and interact. It is
assumed that modeling of the dynamics of point defects
makes it possible to understand quantitatively the pro-
cesses of formation of grown-in microdefects and their
spatial distribution [1]. The model of point-defect
dynamics involves convection, diffusion, and recombi-
nation of intrinsic point defects. In this model, the pro-
cess of fast recombination of intrinsic point defects
near the melting temperature plays a crucial role. The
reason is that the modifications of the model of point-
defect dynamics [2, 3] are based on Voronkov’s theoret-
ical model of grown-in microdefect formation [4].
Voronkov assumed that (i) the recombination rate of
intrinsic point defects near the melting point is very
high, (ii) the diffusion coefficient of Si interstitials near
the melting point exceeds the vacancy diffusion coeffi-
cient, and (iii) the equilibrium vacancy concentration
near the melting point exceeds the equilibrium intersti-
tial concentration. He showed that grown-in microde-
fect formation is controlled by the growth parameter
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crit

 

 = 

 

V

 

/

 

G

 

 (where 

 

V

 

 is the crystal growth rate and 

 

G

 

 is
the axial temperature gradient). This theoretical model
describes the formation of vacancy micropores
(vacancy clusters) at 

 

V

 

/

 

G

 

 > 

 

C

 

crit

 

 and interstitial disloca-
tion loops at 

 

V

 

/

 

G

 

 < 

 

C

 

crit

 

 in different regions of a crystal.
In view of this finding, all modifications of the model of
point-defect dynamics a priori assume that all types of
grown-in microdefects (

 

A

 

, 

 

B

 

, 

 

D

 

(

 

C

 

) microdefects and
vacancy micropores) are manifestations of different
stages of formation of only two types of grown-in
microdefects: vacancy micropores and interstitial dislo-
cation loops. Therefore, it was concluded that grown-in
microdefect formation is based on the decomposition
of a supersaturated solid solution of intrinsic point
defects (vacancies and Si interstitials), which occurs
upon crystal cooling from the crystallization tempera-
ture. One should take into account that, despite the sub-
sequent modification [5], a significant drawback of the
Voronkov model and, respectively, the model of point-
defect dynamics is that it disregards the interaction
between impurities and intrinsic point defects.

The second approach is related to the results of
experimental investigations of the physical nature and
characteristics of grown-in microdefects [6]. On the
basis of these experimental data, we constructed a qual-
itative heterogeneous mechanism of formation and
transformation of grown-in microdefects, which is
based on the following statements [7]:

(i) Recombination of intrinsic point defects near the
melting point is negligible owing to the presence of a
recombination barrier.

(ii) Background oxygen and carbon impurities are
directly involved in the formation and transformation of
grown-in microdefects.
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(iii) Decomposition of a supersaturated solid solu-
tion of point defects upon cooling a crystal occurs via
two mechanisms: vacancy and interstitial.

The basic concepts of the heterogeneous mechanism
contradict the theoretical statements of the Voronkov
model. There is a large amount of experimental data
confirming the adequacy of this mechanism to the real
processes of defect formation in dislocation-free Si sin-
gle crystals. At the same time, the heterogeneous mech-
anism also has a significant drawback: the absence of a
corresponding mathematical model. In this context, the
purpose of this study was to justify the theoretical
model of the heterogeneous mechanism of grown-in
microdefect formation as a result of the “impurity–
intrinsic point defect” interaction.

1. PHYSICAL MODEL

It was shown that the driving force of defect forma-
tion is oxygen–vacancy and carbon–interstitial agglom-
erates formed on the basis of impurity centers [7]. It
was experimentally found that the formation of oxy-
gen–vacancy and carbon–interstitial agglomerates ((I + 

 

V

 

)
microdefects) begins near the melting point [6]. It is
known that secondary grown-in microdefects are
formed upon cooling a crystal at temperatures below
1200

 

°

 

C [8]. On the basis of these experimental results,
we introduced the concepts of primary grown-in micro-
defects ((I + 

 

V

 

), 

 

D

 

(C), 

 

B

 

 microdefects) and secondary
grown-in microdefects (

 

A

 

 microdefects, vacancy
micropores), involving the following types of interac-
tion: primary (fundamental) “impurity–intrinsic point
defect” and secondary (“intrinsic point defect—intrin-
sic point defect”), respectively.

We propose to consider the defect structure of a
crystal as a structure composed of two subsystems: pri-
mary and secondary grown-in microdefects. It is
assumed that the subsystem of secondary defects
(vacancy micropores and interstitial dislocation loops)
can be described by the Voronkov model. In this study,
we consider the process of formation of primary
grown-in microdefects.

As was noted above, in dislocation-free Si single
crystals grown by the floating-zone (FZ-Si) and Czo-
chralski (CZ-Si) methods, the recombination of intrin-
sic point defects near the crystallization front is negli-
gible owing to the presence of an entropy recombina-
tion barrier [6, 8]. At temperatures close to the melting
point, equilibrium concentrations of vacancies and Si
interstitials exist simultaneously. Hence, decomposi-
tion of the supersaturated solid solution of point defects
occurs simultaneously via two mechanisms. In corre-
spondence with the sign of the elastic strain of the sili-
con lattice, these mechanisms were referred to as
vacancy and interstitial. According to the heteroge-
neous mechanism of grown-in microdefect formation,
vacancies (

 

V

 

) and Si interstitials (I) find sinks in the
form of background oxygen (O) and carbon (C) impu-

rities, respectively. In the initial stage of defect forma-
tion, these processes lead to the appearance of (

 

V

 

 + O)
and (C + I) complexes. One can write the following quasi-
chemical equations for the vacancy and interstitial branch
of the heterogeneous mechanism: O

 

i

 

 + 

 

V

 

  (O + 

 

V

 

) and
C

 

S

 

 + I  (C + I), respectively (O

 

i

 

 are oxygen intersti-
tials and C

 

S

 

 are carbon substituents).

Such an idealized system is characteristic of
undoped FZ-Si single crystals grown in vacuum with an
impurity concentration less than 5 

 

×

 

 10

 

15

 

 cm

 

–3

 

. One
should take into account that such a system disregards
the possibility of joint interaction of O

 

i

 

 and C

 

S

 

. In addi-
tion, considering commercial FZ-Si and CZ-Si crystals,
one has to take into account the presence and interac-
tion of other point defects (for example, iron, nitrogen,
dopants).

In this study, we consider an idealized system for
four variables (vacancies, interstitials, oxygen, and car-
bon).

2. MATHEMATICAL MODEL

The solution is sought within the model of dissocia-
tive diffusion–migration of impurities [9]. In this case,
the difference from the decomposition phenomenon is
that during diffusion (as a technological process), a dif-
fusant is supplied to the sample from an external
source, whereas in the case of decomposition it is pro-
duced by an internal source (lattice sites). The theoret-
ical analysis in the same; however, in deformation of
dissociative diffusion, one has to take into account the
surface concentration, which decreases in the sample
volume with time and along the coordinate. The time
constant is determined by the migration mechanism in
the sample volume, while the coordinate dependence is
determined by the sample shape and the boundary con-
ditions of the diffusion problem.

It is difficult to interpret diffusion in multicompo-
nent systems because it is necessary to take into
account the interaction of impurity atoms. Generally,
one has to use numerical methods to solve the equa-
tions; simple analytical expressions, convenient for
comparison with the experimental data, can be obtained
only in certain approximations. The mechanism of
complex formation can be different; however, indepen-
dent of the nature of the forces leading to the formation
of complexes, any model assumes the action radius of
these forces to be small. In this case, in analysis of the
migration of point defects, a complex can be considered
as a point defect.

Let us write the formation of complexes as a quasi-
chemical reaction

 

A

 

 + 

 

B

 

  

 

AB

 

. (1)     
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Then, the thermodynamic equilibrium condition
between the free impurities 

 

A

 

 and 

 

B

 

 and the impurity
bound into 

 

AB

 

 complexes can be written in the form

(2)

where 

 

µ

 

A

 

 and 

 

µ

 

B

 

 are the chemical potentials of free
impurities and 

 

µ

 

AB

 

 is the chemical potential of com-
plexes.

If the total concentration of 

 

A

 

 and 

 

B

 

 impurities (

 

N

 

A

 

,

 

N

 

B

 

) is low in comparison with the concentration of the
main material, 

 

µ

 

AB

 

 

 

≈

 

 ln

 

N

 

AB

 

 in this approximation, and
the equilibrium condition (2) can be written as

(3)

where 

 

Q

 

 is the concentration of complexes and 

 

k

 

(

 

T

 

) is
the constant of the complex formation reaction, which
is temperature-dependent (at constant pressure) [10].
At 

 

k

 

 = 0, the impurity is totally bound into complexes
(strong complex formation).

One should take into account that, in the diffusion
equations written with allowance for the complex for-
mation, the total impurity flux is the sum of the free
impurity flux and the flux of the impurity bound into
complexes [10]:

(4)

(5)

where 

 

D

 

A

 

, 

 

D

 

B

 

, and 

 

D

 

Q

 

 are the diffusion coefficients of
the free components 

 

A

 

 and 

 

B

 

 and complexes, respec-
tively; 

 

x

 

 is the coordinate (crystal length); and 

 

t is time.
The diffusion coefficient of complexes depends on

the mechanism of complex formation and the type of
their components. In particular, if a complex consists of
two interacting atoms, the diffusion coefficient DQ is
much smaller than the corresponding diffusion coeffi-
cients of these atoms, DA and DB. Therefore, assuming
the complexes to be low-mobile, one can neglect the
last terms in Eqs. (4) and (5):

(6)

(7)

Complexes are immobile; hence, the boundary con-
ditions are written for the free impurity. Since the equi-
librium settling time for the complexes and free impu-
rity is much shorter than the characteristic diffusion
time, the total impurity concentration can be set as the
initial condition.

µA µB+ µAB,=

NA Q–( ) NB Q–( )
Q

-------------------------------------------- k T( ),=

∂NA

∂t
---------- DA

∂2
NA Q–( )

∂x
2

--------------------------- DQ
∂2

Q

∂x
2

---------,+=

∂NB

∂t
---------- DB

∂2
NB Q–( )

∂x
2

--------------------------- DQ
∂2

Q

∂x
2

---------,+=

∂NA

∂t
---------- DA

∂2
NA Q–( )

∂x
2

---------------------------,=

∂NB

∂t
---------- DB

∂2
NB Q–( )

∂x
2

---------------------------.=

Vas’kin and Uskov [10] considered the problem of
successive diffusion of a component A into a sample
singly doped with a component B, taking into account
the complex formation at the initial and boundary con-
ditions:

(8)

In this case, the diffusion equation has the form

(9)

where λ =  is the Boltzmann substitution,

primes denote differentiation with respect to λ, and d2 =

.

The solution to the system of equations (9) with the
corresponding boundary conditions (diffusion of the
impurity A from a constant source into a semiconductor
that is homogeneously doped with the impurity B; the
impurity B does not evaporate) in the case of strong
complex formation (k = 0) is [10]

(10)

(11)

where

(12)

NA x 0,( ) 0=

NB x 0,( ) NB ∞( )=

NA 0 t,( ) Q 0 t,( )– HA 0( )=

∂
∂x
------ NB x t,( ) Q x t,( )–[ ]x 0= 0.=

1
2
--- NA NB– k–[

+ k
2

2k NA NB+( ) NA NB–( )2
+ + ] ''

+ 2λNA' 0=

1
2
--- NB NA– k–[

+ k
2

2k NA NB+( ) NA NB–( )2
+ + ] '' 2λd

2
NB'+ 














,

x

2 DAt
----------------

DA

DB

-------

NA

NB1 HA 0( ) 1
erf λ/dA( )
erf λ0/dA( )
-------------------------– , λ λ0<+

0, λ λ0,>





=

NB

NB1, λ λ0<

NB0 1 erfc λd( )
erfc λ0d( )
-----------------------– 

  , λ λ0,>






=

NB1

NB0e
λ0d

2
–

πλ0derfc λ0d( )
----------------------------------------;=
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λ0 is derived from the equation

(13)

Let us rewrite the system of equations (3)–(5) for the
diffusion impurity kinetics of mobile complexes in terms
of total components, NA = HA + Q and NB = HB + Q:

(14)

(15)

(16)

In Eqs. (10)–(16) and below,  = DA;  = DB;

 = DQ. In Eqs. (8)–(16) and below, HA and HB are the
concentrations of the free impurities A and B and NA0
and NA0 are the impurity concentrations at the interface.

Note that the solution to the system of equations is
considered for the three cases that are most often met in
practice: successive distribution, simultaneous diffu-
sion, and interdiffusion. Under the conditions of our
physical model, we can speak about successive diffu-
sion, at which the condition of zero flux of one of the
components (located at the initial instant in the sample
bulk) is set at the interface. In this case, the boundary
conditions have the form

(17)

Generally, the system of equations (14)–(16) with
the boundary conditions (17) does not have an analyti-
cal solution; therefore, to analyze the shape of the
impurity profiles, one has to analyze the limiting cases.
Let us consider the approximation of strong complex
formation (k = 0), which physically means that the A +
B  Q reaction is significantly shifted toward com-
plex formation. In addition, at k = 0, it follows formally
from the system of equations (14)–(16) that the concen-
tration of at least one of the free components is zero;
i.e., HA = 0 or HB = 0 (the impurity is completely bound
into complexes).

The solution to the problem of diffusion of a compo-
nent A in a semi-infinite sample homogeneously doped
with a component B, with the absence of evaporation of
the component B from the sample and the presence of
the free component A at the sample boundary, has the
form [9]

(18)

e
λ0

2
1 d

2
–( )

erf λ0( )
erfc λ0d( )

------------------------------------
NA0

NB0
---------.=

dA
2

NA Q–( )'' dQ
2

Q'' 2λNA'+ + 0,=

dB
2

NB Q–( )'' dQ
2

Q'' 2λNB'+ + 0,=

NA Q–( ) NB Q–( ) k T( )Q.=

dA
2

dB
2

dQ
2

HA λ 0= HA 0( ); HA λ ∞= HA ∞( )= =

dB
2
HB' dQ

2
Q' λ 0=+ 0; HB λ ∞= HB ∞( ).= =

     

HA NA Q–=

=  
NA 0( ) NB1–( ) 1

erfc λ/dA( )
erfc λ0/dA( )
----------------------------– , λ λ0≤

0, λ λ0,>





 

(19)

(20)

(21)

where 

 

S

 

1

 

(

 

x

 

) = , 

 

S

 

2

 

(

 

x

 

) = , and

 

N

 

A

 

(0) – 

 

N

 

B

 

1

 

 = 

 

H

 

A

 

(0). 

 

d

 

A

 

, 

 

d

 

B

 

, and 

 

d

 

Q

 

 are found from
Eqs. (14)–(16).

3. EXPERIMENTAL

Under physical-model conditions (heterogeneous
mechanism of grown-in microdefect formation), we
assume that the component 

 

A

 

 is the background impu-
rity (oxygen O or carbon C) and the component 

 

B

 

 is
intrinsic point defects (vacancies 

 

V

 

 or interstitials 

 

I

 

).
For the vacancy and interstitial mechanisms, we con-
sider, respectively, the oxygen + vacancy (O + 

 

V

 

) and
carbon + interstitial (C + 

 

I

 

) interactions. The following
values were used in the calculations:

The solution to Eqs. (12) and (13) has a physical
meaning (

 

N

 

B

 

1

 

 ~ 10

 

12

 

–10

 

14

 

 cm

 

–3

 

) only at 

 

λ

 

 

 

≈

 

 0.01. Note
that, in the approximation of strong complex formation,

 

λ

 

0

 

 is interpreted as the front boundary of the complex
formation reaction. Since 

 

x

 

 is the crystal length and 

 

x

 

0

 

is the position of the crystallization front, we can con-

HB NB Q–=

=  

0, λ λ0≤

NB ∞( ) 1
erfc λ/dB( )
erfc λ0/dB( )
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 eV/K,×=
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 cm
3–
 FZ-Si( ),×= =
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16
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CI 0( ) 6.31 10
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DI 4.75 10
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 cm
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clude that complex formation occurs near the crystalli-
zation front.

These calculated data are confirmed by the experi-
mental investigation of the initial stages of defect for-
mation. The experiment was performed with quenching
of undoped FZ-Si single crystals 30 mm in diameter,
which were grown in vacuum at different growth rates
(2, 3, 6, 9 mm/min). One of the most effective methods
for crystal quenching was used: decantation of the mol-
ten region, which implies sharp blowing out of the zone
by a directed argon flow at a certain instant. These

experiments made it possible to determine the temper-
atures of grown-in microdefect formation (Table 1) [6].

Quenching of the FZ-Si crystals grown at V =
6 mm/min leads to the formation of a so-called defect-
free region between the crystallization front and the
region with D microdefects. The electron microscopy
analysis shows that the defect-free region contains both
interstitial and vacancy defects 2–7 nm in size with a
concentration of ~4.5 × 1013 cm–3 ((I + V) microde-
fects). The FZ-Si crystals grown at V = 9 mm/min,
being quenched, exhibit interstitial and vacancy micro-
defects in comparable concentrations.

Analysis of the detachment surface revealed that,
owing to the thermal impact, dislocations arise at dis-
tances no more than 1–3 mm from the crystallization
front. Therefore, it is difficult to determine exactly the
onset of the formation of primary grown-in microde-
fects. Taking into account this circumstance and pro-
ceeding from the data of Table 1, we can state that pri-
mary grown-in microdefects are formed near the crys-
tallization front.

Figure 1 shows the dependences of the temperature
distribution on the crystal length T(x) for FZ-Si (30 mm
in diameter) and CZ-Si (50 mm in diameter) crystals.

Temperatures of formation of microdefects of different types

Growth 
rate,

mm/min

Growth 
conditions

Type
of micro-
defects

Distance from
the crystalliza-
tion front, mm

Formation 
temperature, 

±20 K

2 Quenching A 23 TA = 1373

3 Quenching B TB = 1653

6 Quenching D 26 TD = 1423

6; 9 Quenching I + V TI + V = 1653

1400

20 4 6 8 10 12 14 16
X, cm

1300

1500

1600

1700
T, K

3

0.5

20 4 6 8 10 12 14 16
X, cm

600

1600
T, K

9

1

1400

1200

1000

800

(a)

(b)

Fig. 1. Sets of T(x) curves for (a) FZ-Si crystals grown at V = 1–9.0 mm/min and (b) CZ-Si crystals grown at V = 0.5–3 mm/min.
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For the FZ-Si crystals, the dependence T(x) was deter-
mined according to the empirical dependence [11]

(22)

where l is the distance (cm) from the crystallization
front to the cross section under consideration and V is
the crystal growth rate (cm/s).

To simplify the calculations, it was assumed for CZ-
Si crystals that GFZ-Si ≈ 3GCZ-Si, where G is the axial
temperature gradient. At the same time, the expression
for the temperature field can be set according to the

results of [4]: 1/T = 1/Tm + Gx/ , where Tm is the crys-
tallization temperature and x is the distance from the
crystallization front. For the FZ-Si and CZ-Si crystals,
the dependences are given for V = 1–9 and 0.5–
3 mm/min, respectively. In the first stage of the calcula-
tions, the radial temperature gradient was not taken into
account and the radial defect distribution in the crystal
was considered to be homogeneous.

The theoretical calculations were performed for the
vacancy (O + V) and interstitial (C + I) branches of the
heterogeneous mechanism of grown-in microdefect
formation in FZ-Si and CZ-Si single crystals. Figures 2a

dT
dl
------ 10 l 16–( )2

–61.2V 0.28–( ),exp+=

Tm
2

and 2b show the calculated dependences of the concen-
trations of vacancies (CV /CV(0)) and oxygen–vacancy
complexes (CQ1/CQ1(0)) on the CZ-Si crystal length in
the range of growth rates from 0.5 to 3.0 mm/min
(where CV(0) and CQ1(0) are, respectively, the concen-
trations of vacancies and complexes O + V near the
crystallization front).

Similarly, Figs. 3a and 3b show the calculated
dependences of the concentrations of interstitials
(CI/CI(0)) and carbon–interstitial complexes
(CQ2/CQ2(0)) on the FZ-Si crystal length in the range of
growth rates from 1 to 9.0 mm/min (where CI(0) and
CQ2(0) are, respectively, the concentrations of Si inter-
stitials and (C + I) complexes near the crystallization
front). The subscripts 1 and 2 indicate, respectively, the
vacancy and interstitial branches of the heterogeneous
mechanism of grown-in microdefect formation.

In the second stage of the calculations, a 2D temper-
ature field was set in the analytical form according to

the technique described in [12]: 1/T = 1/Tm + Gx/ .
The temperature field along the crystal surface is set as

follows: 1/T = 1/Tm + Gax/ , where Ga is the axial
temperature gradient along the crystal surface. Accord-

Tm
2

Tm
2

5.0
X, cm

1.0
CQ1/CQ1(0)

3

0.5

4.54.03.53.02.52.01.51.00.50

0.8

0.6

0.4

0.2

(b)

5.0
X, cm

1.0
CV/CV(0)

3

0.5

4.54.03.53.02.52.01.51.00.50

0.8

0.6

0.4

0.2

(a)

5.5 6.0

Fig. 2. Sets of the dependences of (a) CV /CV(0) and (b) CQ1/CQ1(0) on the crystal length for the CZ-Si crystals grown at V = 0.5–
3 mm/min.
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ing to the technique [12], the temperature field is set
along the crystal axis and along its surface; the ratio of
the field component along the surface to the component
along the axis is varied with a certain step. At the crys-
tallization front, G is varied for six growth rates of CZ-Si
crystals (0.5–3 mm/min) and nine growth rates for FZ-
Si crystals (1–9 mm/min). Eleven versions are consid-
ered in which the ratio f = Ga/G = 1–2 changes with a
step of 0.1 according to [12].

The calculation data (see below) indicate that the
results obtained by setting a 2D temperature field
according to the technique [12], which was developed
for large CZ-Si crystals, are similar to those obtained
by us by setting the temperature field according to the
technique [11], developed for compact FZ-Si crystals.
The similarity of the results given by these two tech-
niques indicates the absence of fundamental differ-
ences between them, their interchangeability, and the
possibility of their application to crystals of any diam-
eter.

Figures 4a and 4b show the sets of temperature dis-
tributions T(x) along the crystal length for the FZ-Si
(30 mm in diameter, V = 1–9 mm/min) and CZ-Si
(50 mm in diameter, V = 0.5–3 mm/min) crystals. Fig-
ures 5a and 5b show the calculated dependences of

CQ1(0) and CQ2(0) for vacancy–interstitial complexes in
FZ-Si and CZ-Si crystals, respectively. Figures 6a and
6b present the radial distributions of the concentrations
CQ1(0) and CQ2(0) for the FZ-Si and CZ-Si crystals,
respectively.

4. DISCUSSION

Analysis of the calculated curves shows their good
agreement with the experimental data and the results
given by the heterogeneous mechanism of grown-in
microdefect formation. This concerns the temperatures
of formation of primary grown-in microdefects; experi-
ments on crystal quenching (Table 1); and the concentra-
tions of (I + V) and D(C) microdefects (~1013–1014 cm–3),
determined by electron microscopy [6, 7]. Therefore,
despite the accepted assumptions, we can state that the
dissociative model of impurity diffusion is in good
agreement with the experimental data on grown-in
microdefects and can serve as a theoretical basis of the
heterogeneous mechanism of grown-in microdefect
formation. The generation of secondary grown-in
microdefects (interstitial dislocation loops, vacancy
micropores) upon cooling of crystals below 1200°C can
be caused by both the transformation of the initial struc-
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ture of primary grown-in microdefects [6] and the for-
mation of clusters of intrinsic point defects [7].

Note that vacancy pores were not experimentally
found in compact dislocation-free Si single crystals
(FZ-Si crystals 30 mm in diameter and CZ-Si crystals
50 mm in diameter) [6]. In our opinion, their absence
is related to high cooling rates of these crystals at
high growth rates. It is known that high cooling rates
(≥40 K/min) suppress the formation of vacancy
clusters and increase the density of oxygen precip-
itates [13].

Therefore, the process of interaction of intrinsic
point defects with impurities, which begins near the
crystallization front, has a fundamental (primary) char-
acter. It is decisive in the formation of the defect struc-
ture of dislocation-free Si single crystals of high struc-
tural quality. Upon cooling of a crystal (at T < 1200°C),
depending on the thermal growth conditions, condi-
tions for exceeding the equilibrium concentrations of
intrinsic point defects arise owing to the impurity loss.
As a result, vacancy micropores and interstitial disloca-
tion loops are formed in different regions of the crystal.
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In this case, impurity precipitates can serve as conden-
sation regions for intrinsic point defects.

CONCLUSIONS

A mathematical model of the formation of primary
grown-in microdefects has been formulated on the
basis of dissociative diffusion. The cases of oxygen–
vacancy (O + V) and carbon–Si interstitial (C + I) inter-
action near the crystallization front are considered for

dislocation-free Si single crystals grown by the float-
ing-zone and Czochralski methods. The derived
approximate analytical expressions are in agreement
with the heterogeneous mechanism of grown-in micro-
defect formation.

The advantages of the proposed model for calculat-
ing the processes of defect formation during growth of
dislocation-free Si single crystals are that it adequately
describes the experimental data on grown-in microde-
fects and, in addition, is simple and available. The
experimental and theoretical investigations showed that
the defect formation is due to the point defect diffusion
in the temperature gradient field. At temperatures close
to the crystallization point, decomposition of supersat-
urated impurity solid solutions (primary grown-in
microdefects) occurs. Upon crystal cooling (at T <
1200°C), supersaturated solid solutions of intrinsic
point defects (secondary grown-in microdefects)
decompose.
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