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Abstract—Using two alternative approaches to describing the defect structure of dislocation-free copper sin-
gle crystals (the classical theory of the nucleation and growth of particles of the second phase in solids and
Vlasov’s model for solids), we demonstrated that high-temperature precipitation of impurities occurs upon
cooling of a growing crystal. High-temperature precipitation of impurities can lead to further development of
a defective crystal structure due to the formation of dislocation loops, microvoids (or micropores), disloca-
tions, etc.
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INTRODUCTION
Recently, we have created a diffusion model of

defect formation in dislocation-free silicon and ger-
manium single crystals [1–3]. This model can be used
to describe the behavior of structural imperfections
during both crystal growth and the creation of device
structures.

The diffusion model of defect formation is based
on the model of high-temperature precipitation of
impurities. Precipitates formed near the crystallization
front are responsible for the formation of a defective
crystal structure. Upon crystal cooling, precipitates
transform and, depending on various thermal condi-
tions of growth, can form micropores and dislocation
loops [1]. Thermal and radiation treatments of crystals
during the creation of device structures cause the
transformation of dislocation loops into dislocations,
stacking defects, etc. [4]. The theoretical consider-
ation of the diffusion model was based on two theories
of defect formation in solids. These two theories (clas-
sical [5, 6] and probabilistic [7]) were based on com-
pletely different physical principles. However, they led
to identical results and confirmed the fact that high-
temperature precipitation is primary in the creation of
a defect structure in silicon and germanium crystals
[3, 8]. We assumed that high-temperature precipita-
tion forms the site of defect formation in crystals of
various types. This assumption primarily concerns
high-temperature precipitation in metal crystals. The
issues of precipitation of impurities in metals and
metal alloys are being actively studied (see, for exam-
ple, [9–11]). Sajadi et al. [12] considered the alloying
of the Cu–Ni–Si alloy with chromium, iron, alumi-
num, and manganese, followed by a computational

experiment. The authors calculated cases of pairwise
mixing of all elements to study the effect of impurities
on the electrical conductivity and strength of the
matrix. The saturation of the copper melt with oxygen
and the synthesis of chromium carbide to study the
effect of chromium carbide and oxygen on the
mechanical properties of the matrix were discussed in
[13]. These works are undoubtedly essential in light of
the goals pursued by the authors. However, knowledge
of the initial defect structure of the matrix formed at
the initial moment of crystallization of the grown crys-
tal is of no less importance. Any subsequent impact on
the crystals, in particular, doping, leads to the forma-
tion of additional precipitates, that is, structural
imperfections. When studying the effect of additional
processing on the properties of the matrix, we should
take into account its interaction with the already exist-
ing defect structure. The main problem of the theory
of precipitation, as such, is the insufficient attention of
some authors to the primary (initial) defective struc-
ture of the base material and the study of only the sec-
ondary defective structure introduced through addi-
tional processing. As applied to semiconductor mate-
rials, before our series of works, several authors
completely denied the fact of high-temperature pre-
cipitation. Nevertheless, in crystals with a covalent
bond, the initial defective structure was precisely high-
temperature precipitates formed at the initial time of
crystallization after crystal growth, that is, in the
absence of any additional external effects. Thus, the
purpose of this work is to prove the possibility of high-
temperature precipitation in metals using the classical
and probabilistic approaches by demonstrating the
possibility of creating stable impurity complexes at
high temperatures. This problem is relevant from the
point of view of the need to consider the initial defect† Deceased.
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structure of the matrix during its interaction with the
secondary defect structure and for establishing the
identity of defect formation in crystals with covalent
and metallic bonds.

CLASSICAL APPROACH

In the classical approach, the concept of a crystal
lattice is introduced. It is assumed that the atoms are
located at the nodes of the crystal lattice, and their
totality is an integer. The mechanical description of
the behavior of particles and the concept of probability
do not contradict each other [5]. Born’s theory of
crystals led, in particular, to the creation of the classi-
cal theory of the nucleation and growth of particles of
the second phase in solids [6]. The diffusion model
created based on this classical theory describes the for-
mation and development (transformation) of a defec-
tive structure of a solid both during its growth and by
various technological effects [1].

The crystal structure of metals in comparison
with semiconductors has particular characteristics. If
semiconductors (for example, silicon or germanium)
have a loose crystalline structure, metals are distin-
guished by a denser packing of atoms. Consequently,
both types of intrinsic point defects (vacancies and
self-interstitials) can coexist in semiconductors at
comparable concentrations. However, since the
energy of formation of vacancies in the closest pack-
ings of metals is several times less than the energy of
formation of self-interstitials, the formation of the lat-
ter is hindered, and vacancies become the main point
defects.

When crystals grow from a melt, dislocations form.
The concentration and distribution of dislocations are
determined by the thermal conditions of crystal
growth. They can form by various mechanisms. How-
ever, plastic deformation caused by thermal stress is
the main mechanism of crystal growth. Regardless of
the source of stress σ, their occurrence causes elastic
deformation ε = σ/E, where E is the modulus of elas-
ticity. If this stress exceeds a certain value of the yield
strength, plastic deformation occurs accompanied by
the formation of dislocations. Near the melting point,
the yield strength of metals is close to zero, which con-
tributes to a much easier formation of dislocations
compared to covalent crystals, causing great difficul-
ties in growing dislocation-free metal single crystals.

The use of a narrow waist and a system of shielding
devices in Czochralski method significantly lowers the
axial and radial temperature gradients, and thermal
stress could be decreased to a level insufficient for the
formation of dislocations [14]. Based on this data,
large (6–8 mm in diameter and 60 mm in length) dis-
location-free single crystals of copper were obtained.
Previously, similar results [15–17] enabled a conclu-
sion about the heterogeneous mechanism of disloca-
tion formation.
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Let us consider a hypothetical dislocation-free sin-
gle crystal of copper. The concentrations of all point
defects at the crystallization front are in equilibrium.
Differences in the concentrations of vacancies and
self-interstitials near the crystallization front make it
possible to consider only one (vacancy) branch of
defect formation in calculations, in contrast to cova-
lent crystals. When the crystal is cooled after passing
through the diffusion zone, an excess (nonequilib-
rium) concentration of vacancies arises. The disap-
pearance of excess vacancies occurs on the drains, the
role of which is played by various impurities. The for-
mation of complexes between intrinsic point defects
and impurities is determined, on the one hand, by the
fact that both are sources of internal stress in the lattice
(elastic interaction), and, on the other hand, by
Coulomb interaction between them (if defects and
impurities are present in a charged state). We take into
account only the elastic interaction and the oxygen
impurity, which is always present in crystals.

Let us consider an approach based on systems of
interrelated discrete differential equations of quasi-
chemical reactions for describing the initial stages of
the formation of nuclei of new phases and a similar
system of continual differential equations of Fokker–
Planck type. The formation of precipitates can be rep-
resented as a reaction that consists of random pro-
cesses of attachment and detachment of particles X,

(1)

where An is cluster A consisting of n particles X;
g(n, r, t) is the growth rate of cluster An; d(n, r, t) is the
decay rate of cluster An. The concentration of clusters
An at a point r is determined by the function f(n, r, t).
Then the change of this function in time is a system of
differential equations

(2)

Conservation of the number of particles is

(3)

where nmax is the maximum number of particles X con-
tained in cluster A.

The system of discrete equations can be repre-
sented by a continuum partial differential equation
(Fokker–Planck equation) [18],
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Here,

(5)

(6)

The linking of Eqs. (2) and (4) occurs at n = nmin; then
the particle conservation law (3) is

(7)

The system of equations (2)–(7) makes it possible
to consider the processes of nucleation and subsequent
growth of clusters within the framework of a single
model. To simplify the calculations, we consider the
case of a thin plane-parallel crystal plate of a large
diameter, when the conditions in the plane parallel to
the crystal surface can be considered homogeneous,
and diffusion can be considered only along the normal
to the surface (coordinate axis z). The mass balance of
point defects in the crystal is described by a system of
diffusion equations for oxygen atoms and vacancies

(8)

where , CO are the concentrations of vacancies and
oxygen in the crystal, respectively; , DO are the dif-
fusion coefficients of vacancies and oxygen, respec-
tively; ,  are the concentrations of vacancies
and oxygen in precipitates.

The system of interrelated Fokker–Planck equa-
tions can be converted to a dimensionless form

(9)

The normalized sizes of precipitates are defined in
Eq. (9) as  = , where  is the normalized
critical size of precipitates. The critical rate of growth
of precipitates,  = , where

 =  is the number of particles near
the precipitate with critical sizes.

The size distribution function of precipitates in
Eq. (9) is normalized to the initial concentrations of
nucleation centers  = . The particle
fluxes on the right side of Eq. (9) are  = (  –
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The critical size of precipitates can be determined

by the equation [19]

(10)

where SO = CO/ ; SV = CV/  are supersaturations
of oxygen atoms and vacancies, respectively; σ is the
surface energy density of the interface between the
precipitate and the matrix; μ is a copper shear module;
δ and ε are linear and volumetric deformations of the
precipitate and matrix mismatch;  is the fraction of
vacancies per one impurity atom attached to the pre-
cipitate; Vp is the volume of the precipitate molecule;

 + . The number of impurity

atoms in compressed precipitates with radii rO is
defined as

(11)

where x is the fraction of impurity atoms per one
intrinsic defect; x ≤ 2, γV ≤ 0.5.

The following data were used in the calculations:
Vp = 7.4 × 10–2 nm3 (Cu2O); σ = 150 erg/cm2 (Cu2O);
μ = 4.8 × 1010 Pa; δ = 0.3; ε = 0.15; γi = 0.4;  = 0.1;

x = 1.5;  = 0.3615 nm;  = 1018 cm–3; DO =
1.14 × 10–6exp(–62500/RT) m3/s;  = 0.13 ×

exp  [20–23].

The algorithm for solving the problem of modeling
the growth and dissolution of oxygen precipitates due
to the interaction of point defects in the process of
cooling the crystal from the crystallization tempera-
ture is based on the use of a monotonic explicit differ-
ence scheme of the first order of accuracy for Fokker–
Planck equations (9).

The dependencies of the critical radius of oxygen
precipitates (Fig. 1) show that near the crystallization
front (at T = 1357 K), the size of the critical oxygen
precipitate nucleus is 0.15 nm. The minimum values

 =  ≈ 311 are reached in the initial state at T =
1357 K and increase with decreasing temperature. An
increase in the critical radius of precipitates during
crystal cooling leads to a decrease in their growth rate
and, accordingly, a decrease in the precipitation rate.

Figure 2 shows the simulation of the kinetics of
precipitation upon cooling of a growing crystal
according to an exponential law in the temperature
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Fig. 1. Dependence of the critical radius of the oxygen pre-
cipitate on temperature when the crystal is cooled after
growth. 

4

3

2

1
1356 1200 1100 1000 900 800

T, K

r cr, nmO

Fig. 2. Size distribution function of oxygen precipitates
 during crystal cooling after growth. 
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range from 1357 to 1403 K. It is assumed that the con-
centration of nucleation centers for oxygen precipi-
tates is ~1012 cm–3.

PROBABILISTIC APPROACH

In Vlasov’s model, the periodic structure of crys-
tals is due to the specifics of the statistical laws of par-
ticle motion that correlate the periodic structure with
the freedom of movement of atoms rather than a con-
sequence of restrictions on the freedom of movement
of atoms through a crystal. Therefore, the probability
of meeting an atom in interstices is always nonzero [7,
24]. The model is based on the solution of Vlasov’s
kinetic equation, which is a system of equations
describing the evolution of a continuum of particles
with a pair interaction potential [25]. The solution of
this equation under certain conditions leads to the
description of the ideal periodic structure of the crys-
tal [24].

 Vlasov’s model is based on the following basic
physical provisions [24]: (1) the rejection of the prin-
ciple of spatial and velocity localization of particles (in
terms of classical mechanics), which takes place
regardless of force interactions; (2) the introduction of
force interactions by analogy with classical mechanics
but taking into account the new principle of nonlocal-
ization of particles; (3) the description of the behavior
of each particle of the system using the f-function
extended in the phase space. This approach combines
the concepts of continuity and corpuscularity, since
the original way of describing the motion of a particle
is associated with an extended function, and the point
character of a particle manifests itself only in a partic-
ular case [26].

In the general case, Vlasov’s equation describes the
evolution of the distribution function f(x, , t) of thev
PHYSICS OF THE SOLID STATE  Vol. 64  No. 6  2022
continuum of interacting particles in Euclidean space
in terms of velocity and coordinate at time t,

(12)

where K is the pair interaction potential, which in real
problems depends on the distance |x – y|, and F is the
total force with which all particles act on one of them,
which is at point x at time t [25]. To distinguish the
types of interactions, the systems of Vlasov equations
are usually discussed (Vlasov–Poisson, Vlasov–Max-
well, Vlasov–Einstein, and Vlasov–Yang–Mills equa-
tions [26]).

To describe the stationary properties of a crystal,
the concept of particle distribution density ρ(r) =

 is used. The molecular field is determined
only by the probable positions of atoms rather than by
their exact positions, which is expressed by a potential
function containing the probability density of parti-
cles, taking into account the temperature distribution
of particles [24]. The selection of the pair interaction
potential depends on the problem under consider-
ation. Then, the nonlocal model of a crystal is based
on the following nonlinear equations, which make it
possible to calculate the molecular potential and den-
sity of particles under conditions of temperature equi-
librium [24]:

(13)
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Fig. 3. Temperature dependence of the distribution density
of the copper–oxygen complexes.
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initial equations are those for two particles under sta-

tionary conditions  [7]. Here, the characteris-

tic number is understood as such values of a certain
parameter λ, for which Eqs. (13) have solutions that
are different from trivial ones [7]. If we take the posi-
tion of one of the particles as the origin of coordinates,
we can determine ρ(0) = λkT [7]. Determining the
characteristic numbers in Vlasov’s model for solids is
essential.

The characteristic number λ can be determined
from the main criterion for the existence of a crystal-
line state, and the crystallization condition can be
written as

(14)

where N is the number of particles; Tm is the melting
(crystallization) temperature;  =  [7].

The developed diffusion model of defect formation
in covalent crystals is based on the “impurity–intrin-
sic point defect” interaction upon crystal cooling. We
called this process “high-temperature precipitation.”
It links crystal growth with subsequent heat treatment
[1]. The classical approach for metal crystals supposes
that high-temperature precipitation also takes place in
such crystals. Let us now consider the possibility of the
formation of “impurity–intrinsic point defect” com-
plexes near the crystallization front using Vlasov’s
model.

We estimate the possibility of the formation of sta-
ble complexes and the evolution of their distribution
density depending on the nucleation temperature in
the temperature range from Tm = 1357 K to T = 300 K.
Using the classical approach, it was determined that
copper–oxygen complexes form in this temperature
range. Consequently, the precipitation process (nucle-
ation, growth, and coalescence of particles of the sec-
ond phase) occurs over the entire range of cooling
temperatures (T ≈ 1357–300 K) after growth.

The interatomic potential gives information about
the interaction between copper and oxygen atoms and
determines their properties. Model potentials with a
small number of parameters are usually considered.
This is because functions with a larger number of
parameters are obtained based on quantum mechani-
cal calculations, which complicates their analytical
consideration. There are various approaches to the
calculation of interatomic potentials for materials with
metallic bonds. Without dwelling on their analysis, we
point out the modified embedded-atom method
(MEAM), which is often used for pure metals. Using
this method for the “copper–oxygen” system, the
value Kmin = 0.78 eV was obtained [27].

To determine the characteristic numbers of the
copper–oxygen complexes (λ), we use Eq. (14) with
the number of particles in the complex N = 2 and
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K(ρ) =  [7]. The calculation gave λ =

3.319 × 103 eV–1. Based on the fact that the minima of
interatomic potentials correspond to a stable equilib-
rium arrangement of atoms in copper–oxygen com-
plexes, we can determine the distribution density of
complexes depending on the crystal cooling tempera-

ture ρ(T) = . The evolution of the

distribution density upon cooling of a growing crystal
is shown in Fig. 3. In this computational experiment,
we assumed that the concentrations of nuclei for car-
bon and oxygen complexes are ~1012 cm–3.

PRELIMINARY (BRIEF) DISCUSSION
Based on the calculation results, we prove that

high-temperature precipitation is a process character-
istic of both materials with covalent bonds and metal
crystals. High-temperature precipitation can cause
further defect formation, especially in ultrapure mate-
rials. In these crystals, this process is responsible for
the formation of secondary structural imperfections,
such as dislocation loops, micropores, dislocations,
etc. The ease of formation of dislocations in metals
masks high-temperature precipitation. However, two
independent alternative approaches in solid-state
physics confirm the existence of high-temperature
precipitation.

The complexity of theoretical calculations is asso-
ciated with the absence or lack of parameters. This
leads to some inaccuracy in the calculations, which
can be eliminated by further studies. For example, the
role of the effect of self-interstitials on the high-tem-
perature properties of metals is considered in [28].

Despite many years of research on point defects in
metals, the issue of their equilibrium concentration
remains topical, in particular, in connection with the
interstitial theory proposed by Granato [29, 30]. He
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proposed an interstitial theory suggesting that the
defects responsible for melting are interstitials in a
dumbbell-shaped (split) configuration. According to
the interstitial theory, the self-interstitials concentra-
tion in a crystal near the melting point should be only
an order of magnitude lower than the concentration of
vacancies. Although this theory offers a qualitative and
quantitative explanation for a significant number of
essential phenomena observed in liquids and glasses, it
has not received wide acceptance. One of the reasons
for this is the widely held belief that the concentration
of equilibrium dumbbell interstitials is negligible even
near the melting point. However, the high-tempera-
ture precipitation model can also consider this factor:
in such a situation, a joint approach can be used to take
into account vacancies and self-interstitials [1].

Of great interest is the use of a probabilistic
approach to analyze the formation of a defect struc-
ture in crystals with covalent and metallic bonds. In
the present work, such an analysis was carried out for
metals for the first time. The results correlate perfectly
with analogous results for semiconductors [1–4, 8].
Thus, our series of articles prove the validity of
Vlasov’s theory for solids as applied to real materials,
as well as the identity of defect formation in crystals
with covalent and metallic bonds.

CONCLUSIONS

This work is one of the first attempts to approach
the analysis of the real structure of solids from a uni-
fied standpoint. The results of this work indicate that
high-temperature precipitation of impurities forms the
site of defect formation processes in crystals with
covalent and metallic bonds. We can state that
Vlasov’s assumption about the possibility of describing
the real world from a unified standpoint is correct
from the point of view of the identity of the results of
two alternative theories. The main results are

1. The processes of defect formation upon the
growth of dislocation-free covalent and metallic crys-
tals proceed in the same way. They can be described
using the diffusion model of the formation of struc-
tural imperfections.

2. Using two alternative approaches to describing
the defect structure of dislocation-free copper single
crystals (the classical theory of the nucleation and
growth of particles of the second phase in solids and
Vlasov’s model for solids), we demonstrated that high-
temperature precipitation of impurities occurs when a
growing crystal is cooled.

3. High-temperature precipitation of impurities
can lead to further development of a defective crystal
structure due to the formation of dislocation loops,
micropores, dislocations, etc.
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